W moim układzie nie ma dwóch kanałów DMA, przez co tylko ADC moje być obsłużony przez DMA. Ale nic straconego – od czego są wątki w systemach Realtime.

Przewody i MX

Podłączamy dwa urządzenia z wyjściem AO (w moim przypadku czujnik dźwięku i żyroskop), odpowiednio do złącz AO i A1 w STM32.

Konfigurujemy piny (u mnie to PA0 -> ADC1_IN0, PA1 ->ADC2_IN1). Z założenia chcemy obsłużyć OBA przetworniki naraz.

ADC1 konfigurujemy jak w poprzednim przykładzie (DMA itp.), natomiast ADC2 nie posiada opcji DMA, zostawiamy ustawienia domyślne (IN1 checkbox).

Dwa wątki

Napiszemy dwa wątki do symulacji mechanizmu DMA, pierwszy będzie wypełniał bufor (adc2_buf) w odstępach 1ms [0-1023]. W połowie pracy ustawiana jest odpowiednia flaga na 1 i wtedy drugi wątek przystępuje do analizy zapisanych danych. Na koniec pracy ustawia flagę na 0, stąd pierwszy wątek wie, że znowu można pisać w 1szej części tablicy [0-512]. Analogicznie potraktowana jest druga połowa tablicy. Dlatego jak pierwszy wątek pisze na początku, to drugi działa w drugiej połowie i na odwrót.

Cały kod wygląda tak:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
*

<center>© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.</center>*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/

/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
//FX Real Time Thread OS:
#include "rtthread.h"
#include "rthw.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define ADC_BUF_LEN 4096
#define ADC2_BUF_LEN 1024
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
DMA_HandleTypeDef hdma_adc1;

UART_HandleTypeDef huart2;

/* USER CODE BEGIN PV */
//FX:
uint16_t adc_buf[ADC_BUF_LEN]; //ADC DMA BUF
uint16_t adc2_buf[ADC2_BUF_LEN];//max:2048
uint32_t counter1kHz = 0;

extern int rtthread_startup(void);
void rt_hw_console_output(const char *str)
{
HAL_UART_Transmit(&huart2, (uint8_t*)str, rt_strlen(str), 1000);
if(str[ rt_strlen(str) - 1 ] == '\n')
{
char back_r[2];
rt_strncpy(back_r, "\r", 1);
HAL_UART_Transmit(&huart2, (uint8_t*)back_r, rt_strlen(back_r), 1000);
}
}

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_ADC1_Init(void);
static void MX_ADC2_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
//FX:
rt_thread_t write_buffer_thread;
rt_thread_t process_buffer_thread;
volatile uint8_t adc2_half_buffer = 0, adc2_full_buffer = 0; //if adc2 buffer is half full

void write_buffer_thread_entry(void* parameter)
{ //thread1 - ADC2 conversion
HAL_ADC_Start(&hadc2);
int adc2_i=0;
while(1){
if(HAL_ADC_PollForConversion(&hadc2,10) == HAL_OK) //timeout:10
{
while ((adc2_i < ADC2_BUF_LEN/2 && adc2_half_buffer) || (adc2_i >= ADC2_BUF_LEN/2 && adc2_full_buffer)) //wait for 2 thread to finish the job of processing buffers
{
rt_kprintf("-FULL BUFFER -");
rt_thread_delay(1);
}
adc2_buf[adc2_i++] = HAL_ADC_GetValue(&hadc2); //read next value from ADC
if (adc2_i == ADC2_BUF_LEN) //end of buffer
{

adc2_i = 0;
adc2_full_buffer = 1; //set FLAG - FULL BUFFER for thread2
}
else
if (adc2_i == ADC2_BUF_LEN/2) //0-511 (now is 512 but not read yet)
{
adc2_half_buffer = 1;
}
HAL_ADC_Start(&hadc2);
rt_thread_mdelay(1);
}//if HALADC
}//while
}

void process_buffer_thread_entry(void* parameter)
{ //watek 2
while(1){
if (adc2_full_buffer) //512-1023
{
for (int i= (ADC2_BUF_LEN >> 1); i<ADC2_BUF_LEN; i++) { //process half buffer 512->1023
if (adc2_buf[i] > 0 && adc2_buf[i] < 3800)
rt_kprintf("%i/",adc2_buf[i]);
}
adc2_full_buffer = 0; //processed - flag change
}
else
if (adc2_half_buffer)//0-511
{
for (int i=0 ; i<(ADC2_BUF_LEN >> 1); i++)
{ //process half buffer 0->512
if (adc2_buf[i] > 0 && adc2_buf[i] < 3800)
rt_kprintf("%i/",adc2_buf[i]);
}
adc2_half_buffer = 0; //processed - flag change
}
rt_thread_mdelay(100); //musi byc przerwa w obsludze 2 watku
}
}

void run_2_threads(void)
{ //Uruchamia oba watki
write_buffer_thread = rt_thread_create(
"writeBuffer",
write_buffer_thread_entry,
RT_NULL,
512,
3,
20
);
if(write_buffer_thread != RT_NULL)
rt_thread_startup(write_buffer_thread);

process_buffer_thread = rt_thread_create(
"processBuffer",
process_buffer_thread_entry,
RT_NULL,
512,
3,
20
);
if(process_buffer_thread != RT_NULL) /* ???????,????? */
rt_thread_startup(process_buffer_thread);

}

/* USER CODE END 0 */

/**
* @brief The application entry point.
* @retval int
*/

int main(void)
{
/* USER CODE BEGIN 1 */

/* USER CODE END 1 */

/* MCU Configuration--------------------------------------------------------*/

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */
SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART2_UART_Init();
MX_ADC1_Init();
MX_ADC2_Init();
/* USER CODE BEGIN 2 */

run_2_threads(); //run ADC2 threads

/* show RT-Thread version UART2 console */
rt_kprintf("\n\rLOADING...\n");
rt_show_version();

HAL_ADC_Start_DMA(&hadc1, (uint32_t*)adc_buf, ADC_BUF_LEN);

/* USER CODE END 2 */

/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
rt_thread_delay(1);
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}

/**
* @brief System Clock Configuration
* @retval None
*/

void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL2;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;
if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
{
Error_Handler();
}
}

/**
* @brief ADC1 Initialization Function
* @param None
* @retval None
*/

static void MX_ADC1_Init(void)
{

/* USER CODE BEGIN ADC1_Init 0 */

/* USER CODE END ADC1_Init 0 */

ADC_ChannelConfTypeDef sConfig = {0};

/* USER CODE BEGIN ADC1_Init 1 */

/* USER CODE END ADC1_Init 1 */
/** Common config
*/

hadc1.Instance = ADC1;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.ContinuousConvMode = ENABLE;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/

sConfig.Channel = ADC_CHANNEL_0;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */

/* USER CODE END ADC1_Init 2 */

}

/**
* @brief ADC2 Initialization Function
* @param None
* @retval None
*/

static void MX_ADC2_Init(void)
{

/* USER CODE BEGIN ADC2_Init 0 */

/* USER CODE END ADC2_Init 0 */

ADC_ChannelConfTypeDef sConfig = {0};

/* USER CODE BEGIN ADC2_Init 1 */

/* USER CODE END ADC2_Init 1 */
/** Common config
*/

hadc2.Instance = ADC2;
hadc2.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc2.Init.ContinuousConvMode = DISABLE; //?
hadc2.Init.DiscontinuousConvMode = DISABLE;
hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc2.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc2.Init.NbrOfConversion = 1;
if (HAL_ADC_Init(&hadc2) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/

sConfig.Channel = ADC_CHANNEL_1;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC2_Init 2 */

/* USER CODE END ADC2_Init 2 */

}

/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/

static void MX_USART2_UART_Init(void)
{

/* USER CODE BEGIN USART2_Init 0 */

/* USER CODE END USART2_Init 0 */

/* USER CODE BEGIN USART2_Init 1 */

/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */

/* USER CODE END USART2_Init 2 */

}

/**
* Enable DMA controller clock
*/

static void MX_DMA_Init(void)
{

/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();

/* DMA interrupt init */
/* DMA1_Channel1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);

}

/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/

static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};

/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();

/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);

/*Configure GPIO pin : B1_Pin */
GPIO_InitStruct.Pin = B1_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);

/*Configure GPIO pin : LD2_Pin */
GPIO_InitStruct.Pin = LD2_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct);

/* EXTI interrupt init*/
HAL_NVIC_SetPriority(EXTI15_10_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(EXTI15_10_IRQn);

}

/* USER CODE BEGIN 4 */
//FX:

void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc) {
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_SET);
uint32_t sum=0;
uint16_t cycles=0;
for (int i=0; i<2048; i++) sum += adc_buf[i]; sum >>= 11; // /= 2048; //srednia + dc
sum += 20; //DC
for (int i=0; i<2047; i++)
{
if(adc_buf[i] < sum && adc_buf[i+1] >= sum)
cycles++;
}
if (cycles > 0)
rt_kprintf("%lu,", cycles);
}

uint32_t prevClock = 0;
// Called when buffer is completely filled
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc) {
HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET);
uint32_t sum=0;
uint16_t cycles=0;
for (int i=0; i<2048; i++) sum += adc_buf[i]; sum >>=11; // 2048; //srednia + dc
sum += 20; //DC
for (int i=0; i<2047; i++)
{
if(adc_buf[i] < sum && adc_buf[i+1] >= sum)
cycles++;
}
if (cycles > 0)
rt_kprintf("%lu,", cycles);
}

void HAL_SYSTICK_Callback(){
//Clock system callback 1kHz
counter1kHz++;
}
/* USER CODE END 4 */

/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/

void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */

/* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/

void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

 

 

 

 

C, STM32